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O(6)-H(6) and O(4) . . .H(6)  distances 1.00 and 1.86 
A with the 0(4) - - -H(6) -O(6)  angle 160 ° are normal. 
Although the participation of 0(4) in the hydrogen 
bond appears to preserve the symmetry of the exocyclic 
angles at C(15), 0(4) is forced +0.96 (3) A from the 
plane of ring B with C(19) of the attached methyl 
group +1.143 (6) A from the plane. The shortest 
intermolecular approaches (Table 5) indicate that along 
[100] and [001] the molecules are held together by van 
der Waals interactions only. 

We thank Professor A. J. Birch of the Australian 
National University who provided the crystals. 

References 

CHATrERJEA, J. N., ROBINSON, R. & TOMLINSON, M. L. 
(1974). Tetrahedron, 30, 507-512. 

CHEVREUL, M. E. (1808). Ann. Chim. 66, 225-265. 
CHEVREtJL, M. E. (1810). Ann. Chim. Phys. 82, 53-85, 

126-147. 
CRAIG, J. C., NAIK, A. R., PRA'rT, R., JOHNSON, E. & 

BHACCA, N. S. (1965). J. Org. Chem. 30, 1573-1576. 
CROMER, D. T. & LIBERMAN, D. (1970). J. Chem. Phys. 53, 

1891-1898. 

CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 
321-324. 

ISAACS, N. L. & MACKAY, M. F. (1976). Tetrahedron Lett. 
pp. 1921-1922. 

JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak 
Ridge National Laboratory, Tennessee. 

KARLE, I. L. & KARLE, J. (1966). Acta Cryst. 21, 
849-859. 

KARLE, J., HAUPTMAN, H. & CHRIST, C. L. (1958). Acta 
Cryst. 11, 757-761. 

LUHAN, P. A. & MCPHAIL, A. T. (1972). J. Chem. Soc. 
Perkin Trans. 2, pp. 2006-2010. 

MACKAY, M. F. & ISAACS, N. W. (1980). Tetrahedron. In 
the press. 

MORSINGH, F. & ROBINSON, R. (1970). Tetrahedron, 26, 
281-289. 

PERKIN, W. n.  & ROBINSON, R. (1907). J. Chem. Soc. pp. 
1073-1103. 

ROBINSON, R. (1958). Bull. Soc. Chirn. Fr. pp. 125-134. 
ROBINSON, R. (1977). In Rodd's Chemistry of Carbon 

Compounds, Vol. IV, part E, edited by S. COFFEY, Ch. 22. 
New York: Elsevier. 

SHELDRICK, G. M. (1976). SHELX76. Program for Crystal 
Structure Determination, Univ. Chemistry Laboratory, 
Cambridge Univ., England. 

STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). 
J. Chem. Phys. 42, 3175-3187. 

WESTIN, L. (1972). Acta Chem. Scand. 26, 2305-2314. 

Acta Cryst. (1980). B36, 1610-1615 

Electron-Density Distribution in Urea. A Multipolar Expansion 

BY D. MULLEN 

Fachrichtung 17.3 Kristallographie, Universitdt des Saarlandes, D-6600 Saarbriicken, 
• Federal Republic o f  Germany 

(Received 7 December 1979; accepted 18 February 1980) 

Abstract 

A multipole deformation density refinement for urea is 
presented. Deformation-density maps (model maps) so 
obtained are compared with a pseudo-atom model, as 
well as with theoretically calculated densities. An 
analysis is made of errors arising from attributing 
phases from Fe. N to the observed structure amplitudes. 

Introduction 

The electron-density distribution in urea has been 
reported in a previous paper (Scheringer, MuUen, 
Hellner, Hase, Schulte & Schweig, 1978), in which a 
pseudo-atom model of the valence density was refined. 

0567-7408/80/071610-06501.00 

A multipolar expansion of the valence density 
(Hirshfeld, 1971) has now been carried out and a 
comparison will be made between the two models and 
also with the theoretical densities described by 
Scheringer et al. (1978). 

The same X-ray data set (at 123 K) has been used 
for all refinements. 

Multipole refinement 

(a) Description o f  the model 

The expansion of the charge density in the stationary 
molecule is described by Hirshfeld (1971). The charge 
density (Pmo~) is expressed in terms of the spherical- 

© 1980 International Union of Crystallography 
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atom density (pat) with the deformation density (i.e. the 
departures from the spherical-atom distribution) ac- 
counted for by a linear combination of localized atomic 
deformation functions, Pa,l, centred on the atomic 
nuclei. The total static density is thus the sum of these 
two contributions for all atoms in the molecule: 

Pa = pat + ~.  ea, l Pa, t, 
1 

Pmol = ~'. Pa'  
a 

where the coefficients Ca, t are variable population 
parameters in the least-squares refinement. The atomic 
deformation functions are described by Hirshfeld 
(1971). They have the general form 

Pa, l ( r )  = N,, r" exp( -a r  a) cos" O k, 

where r a is the distance from the atomic centre, O k is the 
angle between the radius vector r a and a polar axis k, n 
is an integer between 0 and 4, and a is a parameter 
governing the radial distribution of the deformation 
functions on each type of atom (variable in the 
least-squares refinement). 

There is a possible total of 35 deformation functions 
per atom, but this is reduced by symmetry require- 
ments, where some vanish and some are constrained to 
be equal to others. 

(b) Refinement o f  the urea data 

X-ray data for urea at 123 K were measured by 
Mullen & Hellner (1978) on a Philips PW 1100 
automatic diffractometer with graphite-mono- 
chromated M o K a  radiation. 288 reflections were 
obtained out to sin 0/2 _< 0.9 A -1, and five of these had 
F < 2o(F) and were designated as unobserved. 

The deformation refinements were carried out up to 
the quadrupole (n = 2), octopole (n = 3) and hexa- 
decapole (n = 4) levels for C, N and O. Deformation 
functions centred on C and O have mm and on N 
atoms m point symmetry. For the H atoms, rotational 
symmetry was assumed with deformation functions up 
to n = 2. A modified f curve for H was used (Hirshfeld, 
1977) to account for the contraction of bonded H 
atoms. The effective nuclear charge was taken as 
~" = 1-1 in the expressions f o r f  H (Hirshfeld, 1977). 

The possibility of imposing the molecular symmetry 
plane on the NH 2 group was tested. The numbers of 
deformation functions and R's for the various refine- 
ments are given in Table 1. 

In this paper, the term quadrupole implies the use of 
all functions up to and including the n = 2 level, 
octopole up to and including n = 3, etc. (e.g. n = 3 in- 
eludes monopoles, dipoles, quadrupoles and octopoles). 

The starting parameters for the C, N and O nuclei 

Table 1. Agreement factors  f o r  the various refinements 

Quadrupole Octopole Hexadecapole 

Number of deformation 25 37 58 
functions 

R (%) 1.802 1.158 1.063 
R w (%) 1.727 1.081 0.993 
Goodness of fit* 1.76 1.13 1.09 
F(000) t  62.65 64.03 64.05 

* Defined as 1~. w(IFol - IFcb)2/(NO - NV)]  u2 
t Ideal value = 64.00. 

came from a refinement of high-order X-ray data 
(sin 0/2 > 0.6 A -l) and those for H from limited 
neutron data. In the initial stages of the refinement the 
atomic parameters and the a 's  were kept fixed at the 
starting values and only the deformation coefficients 
(ca.t) were refined. In later stages the a parameters were 
included and finally all parameters (atomic + defor- 
mation) were refined. The atomic parameters of the H 
atoms, however, were kept fixed at their initial values 
and were not refined. 

Discussion 

(a) Results o f  multipole refinements 

The F o -- F e maps (Fig. la -c)  for the octopole and 
hexadecapole refinements are reasonably featureless, 
with the highest residual peaks [in N-H(2)]  of the 
order of 0.1 e A -a. In contrast, the quadrupole 
refinement shows peaks in all bonds which are greater 
than 0.1 e A -3 and in the N-H(2 )  bond a peak of 0.2 
e A -3. A deep hole (-0-26 e A -3) occurs near the C 
atom. 

Agreement factors for all three refinements are 
summarized in Table 1. R for the octopole (1.158%) 
and quadrupole (1.802%) refinements are significantly 
different according to the Hamilton (1965) test at 
the 0.005 level. The hexadecapole refinement 
(R = 1.063%), on the other hand, does not represent 

i 1 r 

(a) (b) (e) 
Fig. 1. ( /7o-  Fe) maps for (a) quadrupole, (b) octopole and (c) 

hexadecapole refinements. Contour intervals are 0.1 e A -3. Zero 
and positive contours solid lines, negative contours dashed. 
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a significant improvement over the octopole with the 
same criteria. These conclusions are substantiated by 
the goodness-of-fit values and calculated F(000) values 
which are near-ideal in both octopole and hexa- 
decapole refinements (Table 1). 

Normal-probability plots (Fig. 2) of the differences 
AF show straight lines with unit slope for both octopole 
and hexadecapole refinements but not for the quadru- 
pole refinement, supporting the conclusions of the 
R-factor analysis above. 

By imposing a mirror plane on the NH 2 group (i.e. 
with mm point symmetry) we increase the agreement 
factors to R = 1.271%, R , =  1.177% and the good- 
ness-of-fit to 1.22 for the octopole refinement. The total 
number of deformation parameters is reduced to 32. 
This increase in R is significant at the 0.005 level 
(Hamilton, 1965), indicating that the two N--H bonds 
are not identical under the criteria indicated. From the 
normal-probability plots of AF, however, no distinction 
is evident, so that the difference is marginal. 

Significant differences were found between core 
parameters of the quadrupole and octopole refinements, 
in particular for Nx, y, where the difference is about 
3.8a. Other parameter differences lie between 1 and 2a. 
The hexadecapole and octopole refinements, in con- 
trast, show differences which are not much greater than 
l cr. Table 2 gives atomic parameters from the octopole 
refinement. 

The scale factors from the octopole and hexa- 
decapole refinements differ by only 0.35%, whereas 
that of the quadrupole refinement is 1.24% smaller 
than that of the octopole refinement. (Scale factor 
multiplies Ft.) 

The same trends are observed in the deformation 
parameters, where the largest differences occur between 
the quadrupole and the other two models. The a's for 
the latter two refinements agree within about la, 
whereas the quadrupole refinement shows differences 
up to 3.8a [for a(N)]. 

Of the additional 21 hexadecapole parameters, nine 
refined to values greater than la, but all these were less 
than 2t7. 

Dynamic and static deformation-density maps 
(model maps) are given in Figs. 3(a)-(c) and 4(a)-(c) 

Table 2. Atomic parameters from the octopole 
refinement ( Uig are × 104) 

y = ½ + x ;  U22 = U, I ;  U 2 3  -~- U I 3 .  

T =  exp [--27r 2 ( Ull h2 a •2 + U22k2 b 02 + U3312 c ~¢2 + Ul2hka* b* 
+ U,3hla*e* + U23klb*c*)]. 

X Z UII U 3 3  U 1 2  U 1 3  

C 0 0.3282 (2) 130 (2) 55 (2) -5  (3) 0 
O 0 0.5962 (4) 167 (2) 62 (4) 13 (4) 0 
N 0-14504(9) 0.1784(1) 253(2) 8 1 ( 1 ) - 1 4 0 ( 2 )  1(I) 
H(1) 0.2561 0.2811 410 246 -206 -30  
H(2) 0.1429 -0.0383 406 188 -154 12 

respectively. The e.s.d.'s of the maps are 0.043, 0.025 
and 0.023 e A -a for the quadrupole, octopole and 
hexadecapole refinements, respectively. Peak heights 
for all three refinements are summarized in Table 3(a) 
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Fig. 2. Normal-probability plots (Abrahams & Keve, 1971) for 
(a) quadrupole and (b) octopole refinements. Numbers indicate 
number of values at a particular point. Asterisks indicate more 
than 10 points. 
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for the dynamic maps and in Table 3(b) for the static 
maps. An examination of Table 3(a) shows that the 
octopole and hexadecapole maps have a maximum 
difference in the O lone-pair peak of 0.04 e A -a. This is 
less than 2a. 

In contrast, the quadrupole model has a peak of only 
0.06 e A -~ in the C - O  bond and a C - N  peak situated 
very close to the N core. 

(b) Comparison with pseudo-atom model 

In a previous study of the density distribution in urea 
(Scheringer et al., 1978) with the same data set, a 

Table 3. Peak heights from various refinements (e/k -a) 

Quadrupole Octopole Hexadecapole 

(a) Dynamic densities 

C=O 0.06 0.29 0.32 
C--N 0.67 0.52 0.51 
N--H(1) 0.29 0.28 0.30 
N-H(2)  0.29 0.25 0.26 
O (lone pair) 0.62 0-56 0.60 

(b) Static densities 

C=O 0.09 0.40 0.45 
C - N  0.92 0.61 0.58 
N-H(1)  0.70 0.47 0.52 
N - H  (2) 0.68 0.43 0-41 
O (lone pair) 0.80 0.75 0.67 

pseudo-atom model" of the valence density was tested. 
Ellipsoidal charge clouds were placed in the bonds to 
represent the bonding density. The core parameters 
from this pseudo-atom refinement (Mullen & Hellner, 
1978) show good agreement (for C, N and O) with the 
octopole parameters, the biggest difference being 2. l tr 
for N(z). Differences with the quadrupole model are at 
a maximum for the positional parameters of N (i.e. 
~4a). 

An examination of the deformation-density maps, 
however, shows that the psuedo-atom model results in 
a map most closely resembling the quadrupole refine- 
ment. The most prominent feature is the failure of both 
the pseudo-atom model and the quadrupole model to 
produce the polarity of the C=O bond with a negative 
peak near O (eft octopole and hexadecapole maps). The 
C=O bond peak in the static density map is only 0.12 
e /k-3 (Scheringer et al., 1978) compared with 0.09 
e A -3 in the quadrupole map and 0.40 e A -3 in the 
octopole map. The C--N peak is close to the N core in 
both the former maps, but is in the bond centre in the 
octopole map. 

R for the psuedo-atom model (1.6%) is close to the 
quadrupole refinement (1.8%) but much higher than 
the octopole value (1.1%) although 34 subsidiary 
parameters were used in the pseudo-atom model (cf 37 
for the octopole refinement). 
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Fig. 3. Dynamic deformation densities for (a) quadrupole, (b) 

octopole and (c) hexadecapole refinements. Contours as for Fig. 
1. 
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Fig. 4. Static deformation densities for (a) quadrupole, (b) octopole 

and (c) hexadecapole refinements. Contours as for Fig. I. 

(c) Comparison with theoretical deformation densities 

Theoretical static and dynamic deformation densities 
for urea, calculated with a 4-31G basis set, are given by 
Scheringer et al. (1978). These maps also show a polar 
C - O  bond in agreement with the octopole and 
hexadecapole models. Comparing the static densities, 
we find that the C - O  bond peak (0.51 e A -3) and 
N - H  peak (0.55 e A -3) are in reasonable agreement 
with those of the octopole and hexadecapole refine- 
ments. The C - N  peak (0.34 e /k-3) is considerably 
lower and the lone-pair peak on O (1.2 e/k-3) is much 
higher than the corresponding values from the multi- 
pole refinements. 

The negative peak in the C - O  bond near O with a 
value of about - 0 . 5  e/k-3 in the theoretical dynamic 
density is in good agreement with the corresponding 
hexadecapole value ( -0 .5  e A -3) but somewhat deeper 
than the octopole value ( -0 .3  e A-3). 

The location and shape of the lone-pair peaks on O 
deserve closer attention. In the octopole map, the peaks 
are comparable in these respects to the theoretical 
maps. These peaks in the quadrupole and pseudo-atom 
maps are not only of a different shape compared with 
the octopole map (Scheringer et al., 1978), but in the 
quadrupole map they are shifted into the C - O  bond 
(Fig. 3a). 

In the hexadecapole map the two related residual 
peaks on O are no longer resolved but form a single 
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broad peak (Fig. 3c). The additional hexadecapole 
functions on O are all of the order of la  or less and are 
not responsible for this marked change in the lone-pair 
shape. In comparison, N and C have fourth-order 
functions of greater significance. The z parameter of O, 
however, shows a shift of 0.004 A towards C on going 
from the octopole to the hexadecapole model. Although 
this shift is less than l o, it is enough to cause the 
difference in peak shape found. Deformation maps are 
thus very sensitive even to small changes in atomic 
positions, especially for features (such as lone-pair 
residual peaks) close to the nuclei. 

Table 4. Mean phase differences between Fo. ~ 
F~.N(°) 

and 

(a) Variation with IFI (b) Variation with sin 0/2 

IFI ranges IA----~I sin 0/2 ranges IA~pl 

0-2 1.47 0-0--0-2 A -i 0-09 
2-4 0.89 0-2-0-3 0-37 
4-6 0.75 0.3-0-4 1-26 
6-10 0.53 0.4-0.5 2.16 

10-15 0.18 0.5-0-6 2.10 
15-20 0.12 0.6-0.7 1.44 

0-7-0.8 0-54 
0.8-0.9 0.46 

(d) Phase differences f o r  Fo, x and Fc, N 

The magnitude of the mean phase differences IA~pl 
between Fo, x and Fc, N for the different I FI and sin 0/2 
ranges are given in Table 4(a,b) and Fig. 5(a,b). Fo. x 
represents (in the present case) the structure factors 
obtained from the multipole refinement and Fc, N those 
calculated on the basis of a spherical-atom model with 
the same atomic parameters as the multipole model. 
The multipole model is assumed to yield the correct 
phases for the observed structure amplitudes and A~0 
then represents errors arising through attributing 
phases from a spherical-atom model to the observed 
F's. These errors, which are reflected in the electron- 
density maps so calculated, have been discussed by 
Mullen & Scheringer (1978) and by Thomas (1978). 
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S IN Ol, I (b) 
Fig. 5. Variation of IA~01 (o)with (a) IFI and (b)sin 0/X. 

Table 4(a) and Fig. 5(a) show the variation of IA~01 
for ranges of IFI. The IA~01 values decrease with 
increasing I FI in agreement with the trend found by 
Thomas (1978), the values lying between 0-12 and 
1.47 ° for urea and between 0.66 and 1-79 ° for lithium 
formate monohydrate. 

Table 4(b) and Fig. 5(b) give the variation of IA~01 
for sin 0/2 ranges. IA---~I values are highest between 0.3 
and 0.7 A -~ in sin 0/2 (1.26-2-16 °) and decrease to 
about 0.5 o at 0.9 A -~ in sin 0/2. This can be under- 
stood in terms of the fall-off of the contribution from 
valence electrons in the high-angle region, so that a 
spherical-atom model represents a better approxi- 
mation to the phases for the experimental structure 
factors in this region of sin 0/2 than in lower regions. 
Lundgren (1979) also points out that the deformation 
functions give little contribution to the high-order data 
(sin 0/2 > 0.7 A-l). 

As sin 0/2 decreases from about 0.5 A -1, the IA(01 
values also decrease rapidly, reaching a value of only 
0.09 ° in the range 0-0.2 A-L For F(000) (i.e. at 
sin 0/2 = 0), the A~0 value must be 0, so that a fall-off 
with decreasing reciprocal path length is understand- 
able. 

Summary 

The multipole refinement must be carried out with 
deformation functions up to the order n = 3 (i.e. 
octopole level) in order to obtain an adequate descrip- 
tion of the density distribution in the molecule. 
Lower-order refinements (quadrupole level) are insuffi- 
cient. Higher-order refinements (i.e. hexadecapole level) 
result in a large increase in refinable parameters and 
introduce relatively minor changes in the deformation 
density. At least for first-row elements such as C, O 
and N, hexadecapoles appear to be largely super- 
fluous. However, the effect on the shape of the lone pair 
on O should be noted. 

Both the quadrupole and the pseudo-atom model fail 
to describe the density in the C - O  bond properly with 
the occurrence of a hole (negative peak) near O. 
Comparison with theoretically calculated densities 
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shows large discrepancies for the C--N bond and O 
lone-pair densities. 

The mean phase differences IA~01 between Fo, x and 
Fc, N vary with I FI more sharply than was found by 
Thomas (1978) for lithium formate monohydrate. For 
urea, the maximum value of 1.47 ° occurs for low IFI 
values an_d_d IA¢I decreases with increasing I FI. With 
sin 0/2, IA~01 has a peak at about 0.5 A -~ and falls off 
at lower and higher angles. 

Thomas (1978) has compared (X -N)  and defor- 
mation refinement procedures and discussed the advan- 
tages of the latter, particularly for non-centro- 
symmetric cases, in terms of the problem of phases 
discussed above. 

The author thanks Klaus Eichhorn for helpful 
discussions, especially concerning the use of the 

multipole refinement program in its version adapted to 
the TR 440 computer at Saarbriicken. 
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Abstract 

161 published structures containing pyranose rings, 
listed in the Cambridge Crystallographic Data File, 
have been investigated to establish the orthogonal 
coordinates of the average ring. Details are given of the 
mathematical procedures used in the calculations, of 
the results for the various hexoses, and of variations 
found. 

Introduction 

In crystallographic structural work, it is often advan- 
tageous to be able to treat a group of atoms as a rigid 
body, i.e. a group in which the atoms maintain a 
constant relationship to each other in terms of the 
distances between the atoms and the angles between 
interatomic vectors, when the whole group of atoms is 
rotated about any axis or translated in any direction. 
Two examples may be given. In the calculation of the 
overall scattering curve for use with direct methods 
of crystallographic phase-angle determination, the 
inclusion of a known rigid group, in terms of a 
molecular scattering factor, in place of the equivalent 
number of atomic scattering factors, can improve the 

0567-7408/80/071615-07501.00 

accuracy of the scale-factor determination and the 
unitary scattering factors and hence produce more 
reliable phase angles. Secondly, if the number of 
independent parameters in a structure determination, 
e.g. positional and thermal vibration parameters, is 
large compared with the number of independent 
observational parameters, then the introduction of a 
group of atoms, treated as a rigid body, can be used to 
reduce the number of structural parameters to be 
refined. In this case, the 3n positional parameters of n 
atoms are replaced by six parameters for the rigid body 
consisting of three positional and three rotational 
parameters. 

These advantages require that the specification of the 
atoms of the rigid group is an accurate representation 
of the group involved and, though it is usually possible 
to calculate the dimensions of such a group from 
known values of bond lengths and angles, other factors 
may make slight, but significant, differences from the 
calculated model. 

One method of establishing the most accurate 
representation of a particular group is to examine 
previously determined structures which contain that 
group and, from these known conformations, derive the 
atom parameters which give the best least-squares fit. 
Care must be taken, however, to ensure that the 
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